Deformation and Fracture Mechanics of Superior Nanocomposites

Author:

Anggraini Lydia1

Affiliation:

1. President University

Abstract

Lightweight ultra-fine grained (<1 μm size) SiC-ZrO2(3Y2O3) composites, with a combination of high hardness, high bending strength and high fracture toughness, were successfully prepared by high energy mechanical milling followed by heat treatment. The SiC-ZrO2(3Y2O3) composites exhibitied high hardness (1707 MPa), high bending strengh (as high as 1689 MPa) and high fracture toughness (up to approximately 12.6 MPa.m1/2). Such a combination of mechanical properties was attributed to the fine microstructure with a distinct feature consisting of almost continuous network of ZrO2(3Y2O3) phase around SiC grains, or we call harmonic microstructure. It has been demonstrated that a combination of these unique microstructural characteristics was very effective in supressing the initiation of cracks and governing the path of their subsequent growth during fracture, leading to excellent combination of mechanical properties.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3