Structure Formation Features of Non-Autoclaved Gas Concrete Matrix on the Basis of Composite Binders with Various Mineral Additives

Author:

Absimetov Michail V.1,Elistratkin Mikhail Yurievich1,Ageeva Marina S.1

Affiliation:

1. Belgorod State Technological University named after V.G. Shukhov

Abstract

One of the effective ways to reduce the material consumption of structures, to save all types of resources due to this, is the transition to porous constructional materials instead of traditional dense materials. In this regard, non-autoclaved gas concrete is of great interest. This material has a high manufacturability and has a good potential for improving the strength properties due to the replacement of traditional portland cement by special composite binders. Available publications confirm the effectiveness and prospects of this direction. An important disadvantage of such works is the fact that the binder indicators and the final cellular concrete characteristics are considered mainly independently. In our opinion, it is more correct to consider at least two structure-forming processes proceeding in parallel and sequentially at different scale levels. Micro level is a stone structure formation based on the composite binder; macro-level is a gas porization of cellular mass concrete. These processes have a great mutual influence on each other, and therefore this article attempts to observe the gassing products effect on the stone hardening based on composite binders, as well as the composite binder makeup on the viscosity change of the molding compound, as an important condition for the formation of high-quality less defective pore structure of cellular concrete.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ABOUT THE PROSPECTS OF USING FLY ASH IN AERATED CONCRETE;Bulletin of Belgorod State Technological University named after. V. G. Shukhov;2022-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3