The Performance of Membranes Interlayer-Free Silica-Pectin Templated for Seawater Desalination via Pervaporation Operated at High Temperature of Feed Solution

Author:

Elma Muthia1ORCID,Pratiwi Amalia Enggar1,Rahma Aulia1,Rampun Erdina Lulu Atika1,Handayani Noni1

Affiliation:

1. Lambung Mangkurat University

Abstract

Recently, water scarcity is the big issues around the world. Especially in coastal area where the water distribution could not entranced and able to supply clean water for the citizen. The one and only solution is processing seawater to produce fresh and potable water. The desalination process using membrane was recommended to solve this issue. Due to that, the membrane with good structure and high hydro-stability was necessary to fabricate. The aim of this work is to investigate the performance of silica-pectin membranes for treating seawater by pervaporation employing silica based membranes. In this work, the silica-pectin membranes were successfully fabricated using Tetraethyl orthosilicate (TEOS) as silica precursor. Then, pectin from apple was also using in various concentrations (0; 0.1 to 0.5%). This organic material was implemented as a templating agent to produce in silica-pectin thin film. This thin films were dipcoated onto membranes support during membranes fabrication. These membranes were calcined in air at 300 and 400°C using rapid thermal processing (RTP) technique. All membranes were tested for water desalination via pervaporation set-up in various feed temperatures (25, 40 and 60°C). Results show that the membranes produced were crack-free and no pore dense. The FTIR-spectra and Fityk analysis refer to membrane of 2.5% at 300°C and 0.5% at 400°C are the optimum condition due to silanol and siloxane concentrations. An excellent performance was obtained at 0.5% at 400°C with water flux of 8.3 kg.m-2.h-1 and high salt rejection of 99.4% at 60 °C of feed temperature. It clearly demonstrates that the silica-pectin membrane has a robust structures due to the templating of carbon chains into silica matrices. The presence of carbon chains in silica matrices may form the smaller and robust pores as expected, that makes the excellent salt rejection in high feed temperature.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3