Affiliation:
1. Madurai Kamaraj University
2. Indian Institute of Technology-Madras (IIT-Madras)
Abstract
Photo catalytic reduction of carbon dioxide orartificial photo synthesisto yield hydrogen and hydrocarbons like methane, methanol etc., has emerged as a subject/process of intensive study due to its potential applications towards abatement of atmospheric CO2levels and conversion to fuels and chemicals. This Chapter provides a comprehensive picture of the process that has posed several scientific and technological challenges, like activation of most stable molecules-CO2and water, extremely low conversion rates, complex reaction pathways involving multi electron transfer steps and short catalyst life. All the major aspects/developments on this process like, the salient features and technological aspects, thermodynamic and kinetic characteristics, various types of photo-active catalysts-, like, titania based catalysts and titania with various dopants and modifiers, various metal oxides/sulfides/nitrides/ layered titanates, binary and ternary oxides of Nb, Ta, Ga & In mixed oxide catalysts, metal complexes, and supra molecular catalysts-, sensitization by macro cylic ligands, influence of process parameters, catalyst structure-property-activity correlations, aspects of deactivation of catalysts, reaction mechanistic aspects and sequential surface reaction pathways, recent trends and future directions have been covered. Design and development of efficient catalyst systems and achieving higher yield of desired products (higher selectivity) and extending the catalyst life are the key issues being pursued by the researchers. The process is in nascent stage and further improvements are needed as CO2conversion rates are extremely small, with products formed in terms of 1-10 micro moles/hr. One of the means of improving the process efficiency is to carry out electrochemical reduction of CO2using solar electric power, with an integrated Photo electrochemical cell (PEC). Yet another option is to reduce CO2to methanol with hydrogen produced using solar powered PEC.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献