Advanced Microstructures for Increased Creep Rupture Strength of MARBN Steels

Author:

Plesiutschnig Ernst,Beal Coline,Paul Stefan1,Zeiler Günter1,Mitsche Stefan2,Sommitsch Christof2ORCID

Affiliation:

1. Böhler Edelstahl Gmbh and Co. KG

2. Graz University of Technology

Abstract

Over the past three decades a lot of effort was made to optimize the chemical compositionof 9% Cr martensitic steels, aiming to increase the operating temperature up to 923K and thus im-proving the efficiency of thermal power plants. Under these service conditions (high temperature andstress exposure), the creep strength of such steels is closely related to the long term stability of theirmicrostructure. The time to rupture can also be understood as an equivalent to the time of microstruc-ture deterioration. Optimization of the initial microstructure and understanding of the microstructureevolution during creep exposure are therefore decisive to improve the creep behavior of 9% Cr steels.Selected chemical compositions of MarBN steels (Martensitic 9% Cr steels strengthened by Car-bides, Nitrides and Boron) were subjected to different heat treatments to produce an optimized mi-crostructure to improve the creep rupture time. The initial microstructure before creep exposure wasinvestigated using optical microscopy, SEM and EBSD. Short term creep rupture tests at 923K and150MPa were performed, followed by systematic microstructure investigations.Comparative EBSD investigations confirm an optimized microstructure for creep exposure, pro-duced by an appropriate heat treatment. From comparative creep test results, it can be concluded thatadvanced microstructures increase the time to rupture of the selected MarBN steels by more than 10percent, without reduction of the ductility.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3