Affiliation:
1. Northeastern University
Abstract
Hot tearing and cold cracks are major defects during direct chill (DC) casting of large sized ingots of high strength aluminium alloys. In order to solve these problems, based on a low frequency electromagnetic casting (LFEC) process, a new technology, electromagnetic casting with the application of an air blade (EMA) was developed. In the present work, this new technology was used to prepare large sized AA7055 aluminium alloy ingots and the effects of the low frequency electromagnetic field and the air blade on macro-physical fields, microstructure and cracking are studied by numerical and experimental methods. The results show that applying an electromagnetic field can modify the flow direction, increase the velocity of melt flow and homogenize the distribution of temperature in the sump. Applying an air blade can homogenize the distribution of temperature and decrease the stress and strain in the solidified ingot. Furthermore, the microstructure of the ingot is refined remarkably and cracking is eliminated by simultaneously applying the electromagnetic field and the air blade during DC casting.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献