A Review on Application of Multifunctional Mesoporous Nanoparticles in Controlled Release of Drug Delivery

Author:

Dave Pragnesh N.1,Chopda Lakha V.2

Affiliation:

1. Krantiguru Shyamji Krishna Verma Kachchh University

2. Government Engineering College

Abstract

In the early 1990s the discovery of the MCM-41 and the M41S family of mesoporous materials had open new era in the chemistry and biology. They have prominent application inbiotechnological, biomedical and heterogeneous catalysts. Mesoporous silica nanoparticles (MSNs) exhibit unique structural features like as their large surface areas, tunable pore sizes in nanometer and well-defined surface properties. MSN materials which are comprised of a honeycomb-like porous structure with hundreds of empty mesoporous channel that are able to encapsulate relatively large amounts of biomolecules. They are ideal candidate for constructing multifunctional materials that encapsulate a variety of functional nanostructured materials. Multifunctional MSN materials have become one of the most attractive areas in nanobiotechnology and nanomedicine for various disease diagnosis and therapy. Multifunctional MSN have been successfully developed as a multifunctional platform to deliver therapeutic and diagnostic agents. Multifunctional MSNs are a highly promising platform for intracellular controlled release of drugs. In this review we discuss the recent developments in design and fabrication of multifunctional mesoporous silica nanoparticles in as efficient drug delivery applications such as the site-specific delivery and intracellular controlled release of drugs.Abbreviations;APTES; 3-aminopropyl triethoxy sialne, ATP; Adenosine triphospahate, CD; cyclodextrinCPT; camptothecin, CS; Chitosan,CTAB; cyltrimethylammonium bromide,DNA; Deoxyribonucleic acid,DOX; doxorubicin,EDC; 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide,FD; fluorescein disodium,FSP;Fluroscent particle ,IBU;ibuprofen,MCM; mobil composition material, MPS; 3-trimethoxylsilyl propyl methacrylate, MS; mesoporous silica,MSN; mesoporous silica nanoparticle, MSNs; mesoporous silica nanoparticles,MSNP; mesoporous silica nanoparticle,NPS; nanoparticles;PFDTES;perfluorodecyltriethoxysilane, PAA; polyacrylic acid,PR;photo responsive,PMAA; polymethyl methacrylate,SBF; simulated body fluid,TEOS;tetraethyl orthosilicate,TUNA;Thio undecyl-tetraethyleneglycoestero-nitrobenzylethyldimethyl ammonium bromide.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3