In Vitro Degradation of β-Tricalcium Phosphate Reinforced Poly(L-Lactic Acid)

Author:

Adamus A.1,Jozwiakowska J.1,Wach R.A.1,Suarez-Sandoval D.2,Ruffieux K.2,Rosiak J.M.1

Affiliation:

1. Technical University of Lodz

2. Degradable Solutions AG

Abstract

Poly (L-lactic acid) (PLLA) and composite of PLLA with osteoconductiveβ-tricalcium phosphate fine powder (PLLA/TCP) compression moulded specimens were subjected toin vitrobiodegradation up one year. Samples were investigated in terms of physical-chemical evaluation after several periods of incubationin simulated body fluid solution. Reduction in PLLA molecular weights occurred during thermal processing of compounding of the polymer with TCP. 3-point bending measurements revealed some decay in the flexural strength and increase in stiffness after incorporation of the inorganic particles into the polymer. Those parameters remained nearly stable during the biodegradation period despite constant drop of polymer molecular weight. Thermal properties of both kinds of samples did not changed significantly, however degree of crystallinity of PLLA matrix was increasing slowly in pure PLLA samples. Despite no mass loss,extent of surface deteriorationincreased steady during the incubation. Current study is intended to develop material for implants, mainly fusion cages targeted for spinal applications.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3