Stability of Nanofluids

Author:

Setia Hema1,Gupta Ritu1,Wanchoo R.K.1

Affiliation:

1. Panjab University

Abstract

It has long been established that a suspension of nanosized solid particles in liquids provide useful advantages in industrial heat transfer fluid systems. Numerous investigations on nanofluids show a significant enhancement in thermal conductivity over the base fluid in which these nanoparticles are dispersed. However, the stability of the suspension is critical in the development and application of these new kind of heat transfer fluids. Rather, high discrepancy in the published data for the same nanoparticles on the physical and thermal characteristics of nanofluids is primarily due to different methods adopted by different researchers to obtain stable nanofluids. Sedimentation and agglomeration of nanoparticles in nanofluids and their dispersion stability has not been well addressed in the literature. Hence, there is a need to establish a standard method of preparation of these nanofluids so as to obtain a unified data which can eventually be utilized for the application of nanofluids. This chapter focuses on the stability of nanofluids prepared via two step process. Different parameters that affect the stability of nanofluids have been discussed. Different techniques that have been used for the evaluation of the stability characteristics of nanofluids have been elucidated.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference50 articles.

1. K.D. Sattler, Handbook of Nanophysics 3: Nanoparticles and quantum dots, Volume 3, CRC Press, (2010).

2. Y. Xuan and Q. Li, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid flow, 21 (2000) 58-64.

3. D. Wen, G. Lin, K. Zhang, Review of nanofluids for heat transfer applications, Particuology 7 (2009) 141-150.

4. Y. Xuan, Q. Li, W. Hu, Aggregation structure and thermal conductivity of nanofluids, AIChE J. 49 (4) (2003) 1038-1043.

5. P. Bhattacharya, Thermal Conductivity and Colloidal Stability of Nanofluids, Arizona State University, (2005).

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3