Affiliation:
1. Warsaw University of Technology
2. Polish Academy of Sciences
Abstract
Grain size refinement is an efficient way to improve mechanical strength and thus make light metals even lighter in terms of specific strength. However, the strength improvement is at the expense of ductility. Therefore, a better understanding of microstructural factors influencing both parameters is of prime importance for further development of ultrafine grained materials. In this work, we report results obtained for 5483 aluminium alloy which was subjected to several severe plastic deformation (SPD) methods, i.e. equal channel angular pressing (ECAP), Hydrostatic Extrusion (HE) and the combination of the two. Detailed microstructural analysis revealed significant difference in the grain size and grain boundary characteristics between samples obtained following different routes. It was found that although the grain size is a prime microstructural parameter determining mechanical strength, second order factors such as grain size distribution and distribution of grain boundary misorientation angles also play a significant role.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献