Microstructure and Strength of γ-TiAl Alloy/Inconel 718 Brazed Joints

Author:

Sequeiros Elsa W.1,Guedes Anibal2,Pinto Ana Maria Pires2,Vieira Manuel F.1,Viana Filomena3

Affiliation:

1. University of Porto

2. University of Minho

3. Universidade do Porto

Abstract

Intermetallics and superalloys brazing development is a current topic owing the extending use of these alloys in industrial applications. In this work a γ-TiAl alloy was joined to Inconel 718 by active metal brazing, using Incusil-ABA as filler. Joining was performed at 730 °C, 830 °C and 930 °C, with a 10 min dwelling time. The interfaces were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Electron Backscatter Diffraction (EBSD). For all processing conditions, the reaction between the base materials and the braze alloy produced multilayered interfaces. For all processing temperatures tested (Ag), (Cu), AlNi2Ti and AlCu2Ti were identified at the interface. Raising the brazing temperature increased the thickness of the interface and coarsened its microstructure. The increase of the extension of the interface was essentially due to the growth of the reaction layers formed near each base material, which were found to be mainly composed of intermetallic compounds. The mechanical behavior of the joints, at room temperature, was assessed by microhardness and shear tests. For all processing conditions the hardness decreases from periphery towards the Ag-rich centre of the joints. Brazing at 730 °C for 10 min produced the joints with the highest average shear strength (228±83 MPa). SEM and EDS analysis of the fracture surfaces revealed that fracture of joints always occurred across the interface, preferentially through the hard layer, essentially composed of AlNi2Ti, resulting from the reaction between Inconel 718 and the braze alloy.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3