Role of Multiwall Carbon Nanotubes (MWCNT) on Electrical Conductivity of Polymer Composite as Alternative Materials for Bipolar Plate Fuel Cell

Author:

Zulfia Anne1,Sutopo 1,Indriyana Bangkit1,Albar M.E.1,Rohman S.2

Affiliation:

1. University of Indonesia

2. Sentra Teknologi Polimer

Abstract

Polypropylene can be improved an electrical conductivity by addition of carbon and multiwall carbon nanotube (MWCNT) as well as combination with copper (Cu) powder. Multiwall carbon nanotube used from 0.1 wt%, 0.5 wt% to 1 wt% while the addition of Cu powder into PP/C was various from 0.1 wt%, 0.2wt% to 0.5wt% respectively. This research focuses on material design of composite based on polymer and carbon to improve an electrical conductivity according to electrical conductivity requirement for bipolar plate. Bipolar plate is one of the components in PEMFC constituted a crucial component that collects and transfers electron from the anode to the cathode, therefore it should possess high electrical conductivity. The main discussion in this research is to analyze the role of multiwall carbon nano tube (MWCNT) and copper on electrical conductivity of polymer composites produced. Functional groups analysis using Fourier Transform Infrared Spectroscopy (FTIR) was also carried out to investigate whether carbon has been mixed perfectly within polypropylene. It is found that the effect of adding a small amount of MWCNT and Cu have improved their electrical conductivity of composites up to 15.62 S/cm.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3