Affiliation:
1. Taiyuan University of Science and Technology
2. Taiyuan University of Technology
Abstract
The microstructures and mechanical properties of AlCoCrFeNi0.3 high-entropy alloys (HEAs) are tailored through heat treatment. During heat treatment, the dendrite phase with a body-centered-cubic (bcc) structure transformed into the interdendrite phase with a bcc structure. Due to the element accumulation with higher hardness in the interdendrites and the increase of volume fraction of interdendrites, the average hardness of AlCoCrFeNi0.3 HEAs increased with the heat-treatment temperature, and the highest hardness was 625 HV. After 500 heat treatment, the optimized mechanical properties under quasi-static compression were achieved, and the yielding strength and fracture plasticity were 2.30 GPa and 9 %, respectively. Upon dynamic loading, the mechanical properties of HEAs were greatly enhanced.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献