Affiliation:
1. Brunel University
2. Korea Institute of Industrial Technology
Abstract
This study investigates the effect of Cu-Carbon Nanotube (Cu-CNT´s) composite powders on the mechanical properties of an Al-Si9.5-Cu4-Fe1.3 wt.% (LM24) aluminium matrix composite (AMC). Carbon nanotubes (CNT’s) can exhibit exceptional mechanical properties, e.g. stiffness up to 1000 GPa and strength in the order of 100 GPa. In recent years there has been significant scientific interest in improving properties in conventional alloys, via fabricating CNT metal matrix composites in order to attempt to harness their extraordinary attributes. In this study mechanically alloyed Cu-CNTS powders were added to molten LM24. The melt was processed using ultrasonic cavitation and subsequently high pressure die casting to form as-cast tensile specimens. SEM results indicate that CNT’s can be successfully introduced into the melt using this method. Compared to the unreinforced alloy, the CNT additions resulted in an increment (~20±10 MPa) to both ultimate tensile strength and yield strength, with a corresponding decline (~1±0.5l %) in elongation. This observed increase in strengthening may be attributed to the CNT’s pinning and hindering both grain boundary and dislocation migration during applied loading. Interestingly, no significant difference in properties were found with an increase in the CNT content (from 0.05 to 0.1 wt.%) potentially indicating a saturation limit.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献