Three Point Bend Performance of Solutionized, Die Quenched and Heat Treated AA7075 Beam Members

Author:

Bardelcik Alexander1,Bouhier Alexandre2,Worswick Michael J.1

Affiliation:

1. University of Waterloo

2. ENSTA Bretagne

Abstract

To overcome the low room temperature formability of AA7075-T6 aluminum sheet, without sacrificing the high strength properties of this alloy, a hat section beam member was formed and quenched within a cold die immediately after a 20 minute solutionizing treatment. Natural aging for 24 hours followed the forming process which was then followed by various heat treatments that included a typical precipitation hardening (PH) and industrial paint bake (PB) temperature-time treatment. Tensile specimens were extracted from the beams to evaluate their mechanical properties. When compared to the as-received AA7075-T6 mechanical properties, the beams heat treated with the PH, PHPB and PB treatment resulted in a 5%, 13% and 20% reduction in ultimate tensile strength respectively. A similar trend was shown for the yield strength measurements. There was little effect of the heat treatments on the total elongation, with the PH condition showing a slight improvement. A backing plate was riveted to the beams and a quasi-static 3 point bend test was conducted to evaluate the crush performance. The peak load for the PH, PHPB and PB beams was 9.2, 8.5 and 7.3 kN respectively, but the calculated energy-displacement (or energy absorption) curves were similar for the PH and PHPB parts due to a more ductile fracture behavior for the PHPB material condition.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3