Affiliation:
1. VIT University Chennai
Abstract
Biogas is a promising alternative fuel for compression ignition (CI) engines owing to its renewability and carbon neutrality. In this study, biogas was used along with diesel in a CI engine in dual fuel mode, i.e. biogas is inducted along with air and this mixture is ignited by the in-cylinder injection of diesel. The viability of using cerium oxide (CeO2) nanoparticles as an additive to diesel was also explored. The effects of three parameters, viz. biogas flow rate and concentration of CeO2 nanoparticles and applied load on engine performance were investigated under constant speed operation. These parameters were varied in the ranges of 0 - 12 litre/min, 0 - 35 mg/litre and 5 - 22 N.m respectively. The experimental test matrix was reduced to 16 trials using Taguchi’s approach. Performance was quantified in terms of brake thermal efficiency, volumetric efficiency, diesel consumption, exhaust gas temperature and overall equivalence ratio. The criteria for optimum performance were defined as maximum brake thermal and volumetric efficiencies and minimum diesel consumption, exhaust gas temperature and overall equivalence ratio. Optimum operating conditions were identified by evaluating the signal to noise ratio (SNR) for each performance parameter and using the higher-the-better (HTB) or lower-the-better (LTB) condition as applicable. Contributions of individual parameters towards the performance indices were found using ANOVA. Load was found to be the main contributing factor for brake thermal efficiency, exhaust gas temperature and overall equivalence ratio. Biogas flow rate showed significant contribution towards volumetric efficiency. Biogas flow rate and load had comparable influences on diesel consumption. Addition of nanoparticles showed minor contribution towards all the performance parameters.
Publisher
Trans Tech Publications, Ltd.
Subject
General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献