Numerical Modeling of Thermophoresis and Diffusiophoresis in Water-Alumina Nano Fluids

Author:

Gobinath Natarajan1,Karthikeyan C.P.1

Affiliation:

1. VIT University

Abstract

Analysis of major heat transfer mechanisms in nanofluids specifically, thermophoresis and diffusiophoresis under pool boiling condition is attempted in this paper. Basic approach of the study tries to correlate thermophoresis in nanofluids to the behavior of rigid particles in gases. Ultimate objective of the study is to elucidate the thermophoresis/diffusiophoresis mechanism in nanofluids using thermophoretic velocity and viscosity of nanofluids. Thermophoretic velocity of water-alumina nanofluid analyzed in this study is assumed to be inversely proportional to fluid viscosity. Experiments and Computational Fluid Dynamics (CFD) tool are used for analyzing the effects of thermophoresis and diffusiophoresis on the heat transfer enhancement process. The numerical model considered for the study is a (2-D) rectangular container with the dimensions of the experimental set-up and a stainless steel heater inside it. Energy equation constituent of ANSYS Fluent is solved using a pressure based implicit solver and appropriate boundary conditions to obtain the temperature distribution pattern of the model. SIMPLE is used as the pressure correction method with Gauss-Siedel iterative method. Numerical simulation results for temperature distribution are validated using experimental readings. Thermophoretic velocity outputs derived from numerical simulation show significant movement of nanoparticles very close to realistic values. However, numerical results of viscosity, specific heat and diffusion coefficient of nanofluids were found to deviate from the results of the experiments. The dependency effect of these parameters needs further attention.

Publisher

Trans Tech Publications, Ltd.

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nucleate pool boiling heat transfer characteristics of R600a with CuO nanoparticles;Journal of Mechanical Science and Technology;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3