Affiliation:
1. Loyola College
2. Velammal Engineering College
3. Ramakrishna Mission Vivekananda College
4. ICAM College of Engineering and Technology
Abstract
Optically active, tin mono-sulphide (SnS) nanoparticles, having generic name herzenbergite, being one of the narrow band gap IV–VI semiconductors, geared up recently the attention of material scientists for its applications in photovoltaics, near-infrared detectors, and biomedical applications where strong scientific information on infrared absorption is required. Among the class of chalcopyrite semiconductors, SnS is a relatively inexpensive and non-toxic material with the nature of resource abundance for solar cell applications, having a bulk direct band gap of 1.3 eV and indirect bandgap of 1.1 eV, possessing high figure of merit such as optimum optical band gap, high optical absorption coefficient for photons and high photoelectric conversion efficiency of up to 25%. In the present work, nanostructured SnS particles of 11.75 nm were synthesized by means of a cinch hydrothermal reaction using the reagents tin chloride pentahydrate and thiourea at 200°C. The crystallinity, purity, morphology, and structural featuresof as-prepared nanoparticles were characterized by Powder X-ray Diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible spectroscopy (Uv-vis), Photoluminescence spectroscopy (PL) and Fourier Transform Infra-red Spectroscopy (FTIR). XRD measurements reveal the formation of well-crystallized orthorhombic tin mono-sulphide nanoparticles which may be considered as a distorted NaCl structure. TEM observations demonstrate the morphology of the nanoparticles. The FTIR examination confirmed the existence of the vital functional groups. Absorption spectrum showed that the nanoparticles have an extensive absorption array. The optical properties determined by Uv-vis and PL measurements show that the prepared SnS nanoparticles will be an ideal candidate for photovoltaic applications.
Publisher
Trans Tech Publications, Ltd.
Subject
General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献