Synthesis and Spectroscopic Analysis of Ferrimagnetic Yttrium Iron Garnet for Tunable Filter Applications

Author:

Goldwin Jasper1,Aravindhan K.2,Senthil V.P.3,Raj S. Gokul4,Kumar G. Ramesh5

Affiliation:

1. Agni College of Technology

2. Bharathiyar University

3. Lt.Commander

4. C. Kandaswami Naidu College For Men (CKNC)

5. Anna University Chennai

Abstract

Yttrium iron garnet (YIG) powdered ceramic powders were synthesized as bulk quantity by traditional solid state synthesis method by the use of yttrium oxide and iron oxide powders. Finely grinded powders were then calcinated for various temperatures such as 900, 1200 oC for 3 hours and 1400oC for 6 hours respectively after making multiple grindings to obtain homogeneity. The calcinated powders were then subjected to phase purity by the use of powder X-ray analysis. As it is clear evident from the samples that the powdered samples were of single phase in nature and that it is clear evident from the nature of the sample which transforms to green in colour from the traditional red iron based oxides. The bonding nature was further ascertained by the used of Fourier transform infrared spectrometer (FTIR) analysis. Thermal stability and phase formation was confirmed through thermal analysis. The thermo-magnetization curve reveals the curie temperature of the sample which is in good agreemement with that of the reported values. Magnetization versus magnetic field curve was obtained which showed increase in magnetization due to the pure phase formation. These preliminary results suggest that the YIG powders could be made in to ceramic pellets for the use of tunable filters in the areas of microwave oscillators.

Publisher

Trans Tech Publications, Ltd.

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3