Ginzburg-Landau Modeling for Martensitic Transformation Coupled with Composition Redistribution

Author:

Xu Guang Long1,Cui Yu Wen1

Affiliation:

1. Nanjing Tech University

Abstract

The Ginzburg-Landau (G-L) model possesses the thermodynamic foundation of energy minimization and is available for many dynamic formalisms, thus holds great potential for investigating the complex materials behaviors. The common ingredient in energy spawns the real-time control of diffusion potential and chemical mobility by integrating G-L model with CALPHAD technique. The coupling between martensitic transformation and dislocation evolution is achieved by mean of continuous mechanism. The updated G-L model is then validated against the martensitic transformation coupled with composition redistribution in Fe-C binary system. The modeling allows some deeper insights into the mechanisms of coupling effects behind the observed phenomena. It has been proven that the partitioning of carbon in steels is an ordinary diffusion governed by instantaneous diffusion potential and chemical mobility. The rough twin boundaries and retained austenite within the martensite should be attributed to the effect of dislocations. Although the developed model in this chapter has deficiencies, it sheds some lights on the integration of multi-physics models for a complex phase transformation.

Publisher

Trans Tech Publications, Ltd.

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3