Determination of Fracture Behavior under Biaxial Loading of Kevlar 149

Author:

Manigandan S.1

Affiliation:

1. Sathyabama University

Abstract

The high crystalline fiber Kevlar 149 has a major industrial application and it is extensively used in aerospace industries due to its significant properties of ultra-high modulus, high strength, low density, high flame resistance. Kevlar 149 has an advantage over K 49, since it absorbs less moisture and has high compression strength [3]. In order to explore the vast application, this paper investigates the fracture response of the Kevlar material computationally, when they are subjected to biaxial loading in both tensile and compression. This loading is done to understand the response of the Kevlar how far they poor in compression and rich in tensile. The fiber induced with epoxy is to form as an effective reinforcement. Here the fiber taken as Kevlar 149 & K-49 and the epoxy resin. For easy understanding a sample of two flat plates is considered as a composite structure of standard size, which under goes the biaxial loading computationally using Abaqus/CAE. The pictorial data’s are taken from the post processing study and the data’s can be used to investigate the fracture mechanism of Kevlar 149 & K-49, under different types of strain loading. The output results of Kevlar 149 is compared with K-49 to analyze the behavior of fiber undergoes the biaxial loading both compressive and tensile and also the merits and effective utilization of K-149. It is suggested that this method can be applied to other type of composite materials.

Publisher

Trans Tech Publications, Ltd.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3