Optimal Quick Charging Station Placement for Electric Vehicles

Author:

Islam Md. Mainul1,Shareef Hussein1,Mohamed Azah1

Affiliation:

1. Universiti Kebangsaan Malaysia

Abstract

Environmental concerns, dependency on imported petroleum and lower cost alternative to gasoline always motivated policymakers worldwide to introduce electric vehicles in road transport system as a solution of those problems. The key issue in this system is recharging the electric vehicle batteries before they are exhausted. Thus, the charging station should be carefully located to make sure the vehicle users can access the charging station within its driving range. This paper therefore proposes a multi-objective optimization method for optimal placement of quick charging station. It intends to minimize the integrated cost of grid energy loss and travelling of vehicle to quick charging station. Due to contrary objectives, weighted sum method is assigned to generate reference Pareto optimal front and optimized the overture by genetic algorithm. The results show that the proposed method can find the optimal solution of quick charging station placement that can benefit electric vehicle users and power grid.

Publisher

Trans Tech Publications, Ltd.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Technical review of electric vehicle charging distribution models with considering driver behaviors impacts;Journal of Traffic and Transportation Engineering (English Edition);2024-08

2. Technological Review of Charging Demand and Distribution Models for Electric Vehicles;International Conference on Transportation and Development 2023;2023-06-13

3. Sustainable and Optimal Rolling of Electric Vehicle on Roadways with Better Implementation;Lecture Notes in Electrical Engineering;2023

4. Electric vehicle charge station layout planning: A case study in Istanbul Technical University campus;Managerial and Decision Economics;2022-11-23

5. Evaluating the effect of electric vehicle charging station locations on line flows:An analytical approach;2022 30th International Conference on Electrical Engineering (ICEE);2022-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3