Experimental Investigation on the Effect of Fill Materials in Cooling Towers

Author:

Jayaprabakar J.1

Affiliation:

1. Sathyabama University

Abstract

The cooling water system is the industry’s primary way of conserving water. Modern water cooling towers were invented during the industrial age to dissipate heat when natural cooling water sources were available. The origin of cooling towers made the plant site selection independent of the availability of water source. The development of new, high efficiency film fills produced from light weights, flame retarded PVC reduces the size and weight of cross flow cooling towers. Today’s cooling tower combine the latest advanced materials to achieve the optimum balancing of High corrosion resistance, product durability and cost. Based on their specific functions, cooling tower components are designed using the materials with the best combination of corrosion resistance and physical properties. In this work, the coefficient of performance is determined by using Simpson’s rule and the performance of cooling tower at various L/G ratios is evaluated. The optimum approach of the tower is calculated.

Publisher

Trans Tech Publications, Ltd.

Reference13 articles.

1. P.S. Rao, P. Praveen kumar, Achieving Enhanced Specific Performance life at cost Reduction by employing thin film Tech. For Environmental Friendly cooling tower design, , Proceeding of the National conference on World Class manufacturing, Amrita & Institute of Technology, Coimbatore (2003).

2. Jim Wallis & Richard Aull, Improving cooling tower performance with Thermal fills, Brent wood Industries Inc.

3. Green, Don wettd , Perry's chemical Engineers Hand book, 6th edition, Tata MC Graw Hill, (1986).

4. Stolker, Refrigeration and Air Conditioning, Tata McGraw Hill, ( 1998).

5. D.Q. Kern, Process Heat Transfer, Tata McGraw Hill. (1998).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3