Affiliation:
1. National Research Tomsk State University
Abstract
The processes of high-velocity interaction of a projectile with a metal-intermetallic laminate (MIL) composite target were numerically investigated in axisymmetrical geometry using the finite element method. To simulate the failure of the material under high velocity impact, we applied the active-type kinetic model determining the growth of microdamages, which continuously changes the properties of the material and induce the relaxation of stresses. To simulate the brittle-like failure of the intermetallic material under high velocity impact, we modified the kinetic model of failure and included the possibility of failure above Hugoniot elastic limit in the shock wave and sharp drop in strength characteristics if the failure begins. The results show that the depth of penetration depends on the thicknesses of intermetallic and titanium alloy layers. The Al3Ti/Ti-6-4 MIL composite target withstands the impact loading in the case of the ratio about 4/1.
Publisher
Trans Tech Publications, Ltd.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献