The Optimization of SIFT Feature Matching Algorithm on Face Recognition Based on BP Neural Network

Author:

Liao B.1,Wang H.F.1

Affiliation:

1. North China Electric Power University

Abstract

In the field of object recognition, the SIFT feature is known to be a very successful local invariant descriptor and has wide application in different domains. However it also has some limitations, for example, in the case of facial illumination variation or under large tilt angle, the identification rate of the SIFT algorithm drops quickly. In order to reduce the probability of mismatching pairs, and improve the matching efficiency of SIFT algorithm, this paper proposes a novel feature matching algorithm. The basic idea is taking the successful-matched SIFT feature points as the training samples to establish a space mapping model based on BP neural network. Then, with the help of this model, the estimated coordinate of the corresponding SIFT feature point in the candidate image is predicted. Finally search the possible matching points around the coordinate. The experiment results show that using the prediction model, the number of mismatching points can be reduced effectively and the number of correct matching pairs increases at the same time

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Application of BP Neural Network Algorithm in the Performance Evaluation of College Teachers;2023 Third International Conference on Digital Data Processing (DDP);2023-11-27

2. Application of IAFSA-BP neural network in face orientation recognition;Journal of Physics: Conference Series;2020-11-01

3. Design of incomplete 3D information image recognition system based on SIFT algorithm and wireless network;EURASIP Journal on Wireless Communications and Networking;2020-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3