Numerical Simulation on End Suction Centrifugal Pump Running in Inverse Flow for Microhydro Applications

Author:

Ismail Mohd Azlan1ORCID,Othman Al Khalid1ORCID,Zen Hushairi1ORCID

Affiliation:

1. Universiti Malaysia Sarawak

Abstract

The initial capital cost for most microhydro projects has always been an overriding issue for self-funded remote communities. The cost will escalate significantly in the absence of local microhydro electromechanical manufacturers. The application of end suction centrifugal pump as turbine will reduce the overall cost, which renders microhydro systems feasible for self-funded projects and are therefore suitable for rural communities. The goal of this study is to design and develop a pump as turbine (PAT) which serves as a substitute to commercial electromechanical components. Numerical analysis of an inverse flow for an end suction centrifugal pump is presented in this paper, which includes the performance curves and hydraulic characteristics of the pump. ANSYS CFX, a commercial CFD software is used to simulate the performance of the pump with specific speed, Ns of 70 units (Euroflo EU50-20). The computational flow domain inside the pump is comprises of impeller, volute and draft tube. Unstructured tetrahedral mesh is used to maintain good surface mesh due to complex flow domain geometries. The governing equations used in the simulations are three-dimensional, incompressible Navier-Stokes and k-ϵ turbulence model under steady-state condition. The simulation results are compared with pump performance curve supplied by the pump manufacturer. The verification results show good agreement for flow rates between 0.7 and 1.3 QBEP. The best efficient point (BEP) for inverse flow is attained at a higher head and flow rate compared to pump mode, whereby the value is found to be 21.55 m and 14.0 l/s, respectively. It is believed that the findings of this study will be useful to predict hydraulic characteristics and performance curves of PAT and the model may be used to identify poor flow characteristics inside the pump. It is recommended that optimization process is carried out using CFD tools in future studies.

Publisher

Trans Tech Publications, Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3