The Effects of Melt Compounding Method on the Ambient and In Vitro Mechanical Properties of EVA/MMT Nanocomposites

Author:

Osman Azlin Fazlina1,Hong Tew Wei1,Alakrach Abdulkader M.1

Affiliation:

1. University Malaysia Perlis

Abstract

The in vitro biostability of ethyl vinyl acetate (EVA) nanocomposite incorporating the organically modified montmorillonite (organo-MMT) was investgated as a new material for biomedical applications. The effects of compounding process and filler loadings on the ambient and in vitro (exposed in oxidizing condition, 37°C) mechanical properties were studied. We have observed that, the melt compounded EVA copolymer by internal mixer (Brabender plasticoder) achieved the highest ambient and in vitro mechanical properties at low nanofiller content (1wt% organo-MMT). In contrast, the melt compounded EVA copolymer by twin screw extruder achieved the highest ambient and in vitro mechanical properties at high nanofiller content (5wt% organo-MMT). We suggest that this was due to the capability of the twin screw extruder to provide greater shear force for the exfoliation and dispersion of the high content organo-MMT as compared to internal mixer (Brabender plasticoder). However, compounding by twin screw extruder caused more severe reduction in tensile toughness of the EVA containing 5 wt% organo-MMT, after this material was exposed to oxidative agent, 37°C. These studies show that the melt compounding method may bring significant effect to both the ambient and in vitro mechanical performance of the EVA nanocomposites, and hence further investigation towards optimization should be pursued.

Publisher

Trans Tech Publications, Ltd.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3