Characterization of Electron Beam Irradiated Polyvinylpyrrolidone-Dextran (PVP/DEX) Blends

Author:

Dumitraşcu Maria1,Albu Mădălina Georgiana2,Vîrgolici Marian3,Vancea Cătălin1,Meltzer Viorica4

Affiliation:

1. National Institute for Lasers Plasma and Radiation Physics (INFLPR)

2. Leather and Footwear Research Institute - INCDTP

3. Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN-HH, 407 Atomiştilor Street, 077125, Măgurele

4. University of Bucharest, Faculty of Chemistry

Abstract

In the past years an increased interest to create new polymeric blends with application in the medical area for development of new types of biomaterials has appeared. Electron beam irradiation is well known as a method of producing important changes in polymer structure, being an alternative to chemical synthesis of biomaterials based on polymeric materials. The aim of the present study was to investigate the behaviour of some polyvinylpyrrolidone-dextran (PVP/DEX) blends under electron beam irradiation. Aqueous solutions of PVP with molecular weights of 360 000 Da (PVP 360), 40 000 Da (PVP 40), and DEX with molecular weight of 500 000 Da (DEX), were mixed as to obtain 50:50 blends of PVP40/DEX and PVP360/DEX. The obtained blends were irradiated with electron beam at different radiation doses and after irradiation treatment were processed by freeze-drying. PVP/DEX blends were characterized by infrared spectroscopy (FT-IR) and thermal analysis. The analyses were conducted in order to establish the relation between radiation dose and changes of structural and thermal properties.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3