Optical Analysis of RE3+: Boro-Fluoro-Phosphate Glasses

Author:

Sudhakar Reddy B.1,Buddhudu S.2

Affiliation:

1. Sri Venkateswara Degree College

2. Sri Venkateswara University

Abstract

We report here on the preparation and optical characterization of certain rare earth (Nd3+,Tb3+,Pr3+ &Tm3+ each in 0.2 mol %) ions doped in two new series glasses in the following composition: Series A: 69.8 B2O3 – 10 P2O5 – 10(ZnO/CdO/TeO2) – 10 AlF3 Series B: 69.8 B2O3 – 10 P2O5 – 10(ZnO/CdO/TeO2) – 10 LiF By applying the Judd-Ofelt intensity parameters of Nd3+: BFP glasses, radiative properties of the emission transitions ( 4F3/2 ®4IJ=9/2, 11/2 &13/2 ) at 906, 1079 and 1349nm have been evaluated. By applying the Judd-Ofelt intensity parameters, radiative properties for Er3+ ions doped glasses, the NIR emission (4I13/2 4I15/2 ) at 1547nm , and also visible green emission (4S3/2 4I15/2 ) at 547nm have been evaluated. Measured absorption spectra of Pr3+: BFP glasses have shown eight absorption bands at 443, 469, 481, 589 , 1008, 1419, 1523 and 1930 nm which correspond to the transitions 3H4 ®3P2, 3P1, 3P0, 1D2, 1G4,3F4, 3F3 and 3F2 respectively. Absorption spectra of Tm3+: glasses have revealed five absorption bands at 466, 685, 790, 1206 and 1644 nm which corresponding to the transitions 3H6®1G4, 3F3, 3H4, 3H5 and 3F4 respectively. Pr3+: glasses, with an excitation at 442nm (3H4 ®3P2), a orange-red emission at 600 nm (1D2® 3H4) has been observed. In the case of Tm3+: glasses, upon excitation with 355nm (3H6®1D2), blue emissions at 452 nm (1D2®3F4) and at 476 nm (1G4®3H6) are observed. From the measured NIR emission spectra of Pr3+: BFP glasses, an NIR emission at 1354nm (1G4®3H5) and form Tm3+: glasses, an NIR emission (3F4®3H6) at 1809 nm are observed with an Ar+ laser (514.5 nm) as the excitation source.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3