Impact of Extended Defects on the Electrical Properties of Solar Grade Multicrystalline Silicon for Solar Cell Application

Author:

Binetti Simona1,Acciarri Maurizio1,Libal Joris1

Affiliation:

1. Università di Milano-Bicocca

Abstract

Aim of this work is to study the electrical properties and the minority charge carrier recombination behaviour of extended defects in multicrystalline silicon (mc-Si) ingots grown from solar grade silicon (SoG-Si) feedstock. The pure metallurgical SoG-Si feedstock has been produced directly by carbothermic reduction of very pure quartz and carbon without subsequent purification processes.This mc SoG-Si is studied by temperature-dependent Electron Beam Induced Current measurements and PhotoLuminescence spectroscopy and the potentiality of the combination of these two techniques in the identification of the defects which limit the quality of the base material is shown. The EBIC mapping technique shows the presence of electrically active grain boundaries at room temperature while dislocations result inactive. Dislocations become active only at temperatures lower than 250K, indicating a moderate level of metal decoration. The most detrimental defects in this material seem to be the grain boundaries and impurities dissolved in the matrix. Furthermore, the PL spectra reveal the presence of oxygen and carbon related complexes. In this work we show that the knowledge about the defect related recombination processes acquired by a combined application of EBIC measurements and PL-spectroscopy is of particular importance to tune the proper solar cell process step to be applied on such material.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced solar cell efficiency: copper zinc tin sulfide absorber thickness and defect density analysis;Journal of Materials Science: Materials in Electronics;2023-08

2. Photoluminescence Imaging and LBIC Characterization of Defects in mc-Si Solar Cells;Journal of Electronic Materials;2018-05-22

3. Gettering Processes and the Role of Extended Defects;Advanced Silicon Materials for Photovoltaic Applications;2012-06-13

4. Influence of stain etching on low minority carrier lifetime areas of multicrystalline silicon for solar cells;Materials Science and Engineering: B;2011-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3