Affiliation:
1. Ghent University
2. Materials Innovation Institut (M2i)
Abstract
Although plenty of research has already been carried out on the issue of texture control in non-oriented electrical steels, there is not yet a universally applied industrial process to obtain an optimized {001} fibre texture. Among the various laboratory processes that have been studied so far, cross rolling seems to be one of the most promising approaches. For evident reasons cross-rolling cannot be implemented on a conventional continuous rolling line of an industrial plant. In the present study a potential interesting alternative is presented which may deliver a similar texture evolution as the cross rolling process, but can be applied in a continuous line of hot and cold rolling operations followed by recrystallization annealing. By applying severe rolling reductions a very strong rotated cube texture is obtained very much similar to the one that is observed after cross rolling. After annealing, the rotated cube texture changes to a {h11}<1/h,21> fibre texture with a maximum on the {311}<136> component which implies the potential to develop a {001} fibre texture after further processing. It is argued that the appearance of the {311}<136> recrystallization texture component can be attributed to oriented nucleation in the vicinity of grain boundaries between slightly misoriented rotated cube grains.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献