Hydroxyapatite Growth on Glass/CdSe/SiOx Nanostructures

Author:

Pramatarova Lilyana1,Pecheva Emilia,Nesheva Diana1,Aneva Z.,Tóth Attila Lajos2,Horváth Enikõ2,Riesz Ferenc2

Affiliation:

1. Bulgarian Academy of Sciences

2. Hungarian Academy of Sciences

Abstract

The aim of this study was to find if nanocrystal layers obtained by well-established nanotechnology are able to induce deposition of hydroxyapatite [Ca10(PO4)6(OH)2]. It is known that nanosized objects and porous structures influence biological events and they may be used to create biologically integrated multifunctional devices including biomaterials and sensors. In this work, sequential physical vapour deposition of CdSe and SiO, or SiOx film was used to modify glass substrates. To study the ability of the nanostructured surfaces to induce hydroxyapatite deposition, samples were immersed in a simulated body fluid and simultaneously irradiated with a scanning laser beam for a few minutes. This resulted in a porous sponge-like non homogeneous hydroxyapatite layer, consisting of networks of aggregates of nano dimensions on the modified surfaces. Analysis showed higher Ca and P contents in the stripes of the laser-substrate interaction, which indicated the influence of the laser energy. The method of laser-liquid-solid interaction used has led to a synergistic effect due to the simultaneous use of the nanostructured substrate, aqueous solution and laser energy.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Reference9 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stimulated in vitro bone-like apatite formation by a novel laser processing technique;Chemical Engineering Journal;2008-03-15

2. Bioactivity of Polycrystalline Silicon Layers;Journal of Nanoscience and Nanotechnology;2008-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3