Application of Syntactic Pattern Recognition Approach in Design and Optimisation of Group Machining Systems

Author:

Siemiatkowski Mieczyslaw1

Affiliation:

1. Gdansk University of Technology

Abstract

The focus of this paper is on planning applications of group technology (GT) and the design of related layouts for multi-assortment cellular manufacturing (CM) of mechanical parts. A methodical approach is developed to optimally solve cell formation (CF) problems with CM systems design, which consists in the identification of machine cells and corresponding part families. The approach involves the use of syntactic pattern recognition concepts from the field of artificial intelligence (AI). It is based on methods of strings matching and clustering, applied extensively in genetics, molecular chemistry and biological sciences. The CF strategy followed implies clustering character strings that denote machine sequences in process routings. Numerical quantification of dissimilarity between part routings by a specific distance measure and the concept of average linkage clustering algorithm (ALCA) are at the core of the clustering procedure. The use of the approach is studied numerically with regard to a real industrial case and diverse layouts of cellular system are considered, including those with machine sharing. Group process alternatives with given system layouts and workflows prototyped by definite job sequencing rules, are simulated using programmed models. Generated design solutions are subjected to further analysis and quantitative evaluation by assumed measures of their operational performance.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3