Role of Particle Size on Structural and Magnetic Behavior of Nanocrystalline Cu-Ni Ferrite

Author:

Dolia S.N.1

Affiliation:

1. University of Rajasthan

Abstract

Particle size has significant effect on the magnetic properties of fine particles. In this work, Cu0.2Ni0.8Fe2O4 nano-particles have been synthesized by the co-precipitation method. Different particle sizes were obtained by annealing the samples at various temperatures. The X-ray diffraction (XRD) patterns confirm the formation of cubic spinel structure. The particle size was found to enhance with increasing the annealing temperature. The saturation magnetization and the blocking temperature increase with particle size, which is a typical characteristic of the superparamagnetic behaviour. The dc magnetization measurements show that the samples are superparamagnetic above the blocking temperatures and the blocking temperature of the nanoparticles correlates with the size of the nanoparticles that is found to increase as the function of the particle size. The hysteresis curves show reduction in saturation magnetization in case of nanoparticles as compared to their bulk counterparts. This has been explained on the basis that the magnetic moments in the surface layers of a nanoparticle are in a state of frozen disorder. However, the saturation magnetization increases with particle size, which is a characteristic property of the single domain superparamagnetic particles.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3