Phase Transformation and Shape Memory Effect in Ru-Based High Temperature Shape Memory Alloys

Author:

Manzoni Anna1,Chastaing Karine1,Denquin Anne1,Vermaut Philippe2,Portier Richard2

Affiliation:

1. ONERA

2. ChimieParisTech

Abstract

Among the different systems for high temperature shape memory alloys (SMA’s), equiatomic RuNb and RuTa alloys demonstrate both shape memory effect (SME) and MT temperatures above 800°C. For both systems, it is interesting to find a way to control the transformation temperatures while keeping the shape memory effect. One way to change the transformation temperatures is to change the composition in the binary alloys; another is to add a ternary element like Fe. The eight investigated alloys show two different space groups at room temperature. The monoclinic alloys undergo two successive displacive transformations on cooling, starting from the high temperature β phase field: β (B2) à β’ (tetragonal) à β’’ (monoclinic). The tetragonal alloys exhibit a single transition from cubic to tetragonal. A multiple twinned microstructure can be found in all alloys. Transformation temperatures decrease with lower Ru content and with the addition of Fe. The β’ à β transformation seems to be the main responsible for the SME. Compression tests performed in the martensitic phase give a quantitative result of the shape memory effect. In the binary alloys, the SME decreases with decreasing Ru content, which is in accordance with the evolution of the lattice parameters of martensites. A lower SME in the ternary alloys can also be linked to the lattice parameters and seems to be quite reliable to predict the evolution of the shape memory effect.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3