Impact of Hydrogenation on Electrical Properties of NiSi2 Precipitates in Silicon

Author:

Vyvenko O.F.1,Bazlov N.V.,Trushin M.V.,Nadolinski A.A.,Seibt Michael2,Schröter Wolfgang3,Hahn George T.

Affiliation:

1. St. Petersburg State University

2. Universität Göttingen

3. IV. Physikalisches Institut der Universität Göttingen

Abstract

Influence of annealing in molecular hydrogen as well as of treatment in hydrogen plasma (hydrogenation) on the electrical properties of NiSi2 precipitates in n- and p-type silicon has been studied by means of deep level transient spectroscopy (DLTS). Both annealing and hydrogenation gave rise to noticeable changes of the shape of the DLTS-peak and of the character of its dependence on the refilling pulse duration that according to [1] allows one to classify the electronic states of extended defects as “band-like” or “localized”. In both n- and p-type samples DLTS-peak in the initial as quenched samples showed bandlike behaviour. Annealing or hydrogenation of n-type samples converted the band-like states to the localised ones but differently shifted the DLTS-peak to higher temperatures. In p-type samples, the initial “band-like” behaviour of DLTS peak remained qualitatively unchanged after annealing or hydrogenation. A decrease of the DLTS-peak due to precipitates and the appearance of the peaks due to substitutional nickel and its complexes were found in hydrogenated p-type sample after removal of a surface layer of 10-20µm.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3