Effects of Temperature and Strain Rate on the Evolution of Thickness of Transformed Adiabatic Shear Band

Author:

Wang X.B.1

Affiliation:

1. Liaoning Technical University

Abstract

The coexistent phenomenon of deformed and transformed adiabatic shear bands (ASBs) is analyzed using Johnson-Cook model and gradient-dependent plasticity for heterogeneous ductile metal material. The size of deformed ASB is described by the internal length reflecting the heterogeneity of material. Microstructural effect leads to a nonuniform distribution of temperature rise in deformed ASB. When the peak temperature in deformed ASB exceeds the transformation temperature, a transformed ASB appears at the center of deformed ASB. With a decrease of flow shear stress, the width of transformed ASB increases until its upper bound, i.e., the size of deformed ASB, is reached. The effects of initial temperature and strain rate on the occurrence of transformation, evolution of the thickness of transformed ASB, distributions of local temperature and plastic shear deformation in ASB are investigated. Lower initial temperature results in higher peak shear stress, later occurrence of shear strain localization, lower shear stress when transformation occurs, later occurrence of transformation, thinner transformed ASB, lower peak temperature in ASB, and lower value of local plastic shear deformation in the boundaries of transformed ASB. At higher strain rates, the transformed ASB is wider; the peak temperature in ASB is higher; the value of local plastic shear deformation in the boundaries of transformed ASB is higher; the flow shear stress that corresponds to transformation is higher; earlier occurrence of transformation and higher peak shear stress will be expected.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3