Hydrogen Relaxation Process in HiPco Carbon Nanotubes Studied by Mechanical Spectroscopy

Author:

Cantelli Rosario1,Paolone Achille2,Roth S.3,Dettlaff U.3

Affiliation:

1. Sapienza Università di Roma

2. Università di Roma La Sapienza

3. Max-Planck-Institut für Festkörperforschung

Abstract

The first mechanical spectroscopy experiments in HiPco carbon nanotubes from room temperature to 3 K revealed a thermally activated relaxation process at about 25 K for frequencies in the kHz range. The peak is due to the presence of a very mobile species performing about 103 jumps per second at the peak temperature. The activation energy obtained by the peak shift with frequency is Ea = 54.7 meV; the value of the pre-exponential factor of the Arrhenius law for the relaxation time, τ0 = 10-14 s, which is typical of point defect relaxation and suggests that the process is originated by the dynamics of hydrogen or by H complexes. The peak is much broader than a single Debye relaxation process, indicating the presence of intense elastic interactions in the highly disordered bundle structure. There are indications that the relaxation process is governed by a quantum mechanism.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3