A Comparison of Deep Drawing and Ironing of Metal Alloy Strip Produced Conventionally and Non-Conventionally via Semi Solid Material Processing

Author:

de Pádua Lima Filho Antonio1,Yamasaki Márcio Iuji1,Ono Leandro Akita1,Nampo Lourenço2,Padilha Alcides1

Affiliation:

1. UNESP-São Paulo State University

2. Cookson Electronics Brasil Ltda.

Abstract

A semi solid thin strip continuous casting process was used to obtain 50%wt Pb/50%wtSn strip by single and twin roll processing at speed of 15 m/min. A 50%wt Pb/50%wtSn plate ingot was also cast for rolling conventionally into strips of 1.4 mm thickness and 45 mm width for comparison with those achieved non-conventionally. This hypoeutectic alloy has a solidification interval and fusion temperature of approximately 31°C and 215°C respectively. The casting alloy temperature was around 280°C as measured by a type K immersion thermocouple prior to pouring into a tundish designed to maintain a constant melt flow on the cooling slope during semi solid material production. A nozzle with a weir ensures that the semi solid material is dragged smoothly by the lower roll, producing strip with minimum contamination of slag/oxide. The temperatures of the cooling slope and the lower roll were also monitored using K type thermocouples. The coiled semi solid strip, which has a thickness of 1.5 mm and 45 mm width, was rolled conventionally in order to obtain 1.2 mm thick strip. The coiled thixorolled strip had a thickness of 1.2 mm and achieved practically the same width as the conventional strips. Blanks of 40 mm diameter were cut from the strips in a mechanical press, ready for deep drawing and ironing for mechanical characterization. All the strips achieved from non-conventional processing had the same mechanical performance as those achieved conventionally. The limiting drawing ratio (LDR) achieved was approximately 2.0 for all strips. Microscopy examination was made in order to observe phase segregation during processing.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3