Application of Hybrid Vision Method for the Hot Aluminium Surface Inspection

Author:

Giesko Tomasz1,Garbacz Piotr1

Affiliation:

1. National Research Institute

Abstract

The paper presents the possibilities of a hybrid vision method based on simultaneous analysis of infrared and vision images for surface inspection of hot aluminium in a manufacturing process. The system consists of a NIR/SWIR camera and a high resolution visual camera, and a computer based image analysis system. The simultaneous analysis of infrared and vision images will enable surface inspection for detecting defects in temperature range from 200°C to 600°C. Thermal images present temperature distribution on the surface, and contain information about the manufacturing process. The analysis of thermograms enables to find areas of temperature irregularity caused by increased friction loads, as well as areas of inhomogeneous emissivity caused by surface defects. Furthermore, information captured by the vision camera is used to detect surface defects. The software developed enables the overlaying of images. The proposed simultaneous thermovision and vision imaging can be applied in industry for in-line monitoring of aluminium extrusion processes.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Defect Detection Method of Aluminum Profile Surface Using Deep Self-Attention Mechanism Under Hybrid Noise Conditions;IEEE Transactions on Instrumentation and Measurement;2021

2. Inspection method of aluminium extrusion process;Archives of Civil and Mechanical Engineering;2015-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3