Phase Transition and Thermoelectric Property of Ultra-Fine Structured β-FeSi2 Compounds

Author:

Hong Soon Jik1,Rhee Chang Kyu2,Chun Byong Sun3

Affiliation:

1. Kongju National University

2. Korea Atomic Energy Research Institute

3. Chungnam National University

Abstract

FeSi2 compounds were fabricated by rapid solidification and hot pressing, which is considered to be a mass production technique for this alloy. Structural behavior of melt-spun ribbon during heat-treatment and Seebeck coefficient of the hot pressed bulk were systemically investigated and compared with conventionally fabricated alloys. The melt-spun ribbon consists of α-Fe2Si5 and ε-FeSi phase. With increasing annealing time, the phase transition to β-FeSi2 phase occurred more rapidly. 20 min of annealing is sufficient for a homogeneous formation of β-FeSi2 phase in melt-spun ribbon, while it is 100 h in as-cast alloy. In this research, the formation mechanism of β-FeSi2 phase during annealing is a transition of α+ε→β. The microstructure of sintered bulk generally consist of a randomly distributed β-FeSi2 phase with an average grain size of 0.9 μm. The increase of Seebeck coefficient in melt-spun and sintered specimen is due to fine grain size formed by rapid solidification.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Reference10 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding the Formation of Complex Phases: The Case of FeSi2;Applied Sciences;2023-11-25

2. Charge storage in β-FeSi2 nanoparticles;Journal of Applied Physics;2015-02-07

3. Direct gas-phase synthesis of single-phase β-FeSi2 nanoparticles;Journal of Nanoparticle Research;2013-08-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3