Nanophase Separation and Magnetic Spin Glass in Nd2/3Ca1/3MnO3

Author:

Kajňaková Marcela1,Feher Alexander1,Fertman Elena2,Desnenko Vladimir3,Beznosov Anatoly2,Dolya Sergiy2

Affiliation:

1. Šafárik University and Institute of Experimental Physics

2. UAS

3. B. Verkin Institute for Low Temperature Physics & Engineering

Abstract

A study of the low temperature magnetic state of polycrystalline colossal magnetoresistance perovskite Nd2/3Ca1/3MnO3 has been carried out. The data obtained, such as strongly divergent ZFC and FC static magnetizations and frequency dependent ac susceptibility, are evident of the glassy magnetic state of the system. Well defined maxima Tmax in the in-phase linear ac susceptibility χ curves were observed, indicating a spin-glass transition. Clear frequency dependence of the cusp temperature Tmax was found. The frequency dependence of Tmax was successfully analyzed by the dynamical scaling theory of a three-dimensional spin glass. Slow relaxation process and variety of relaxation times found imply a cluster glass magnetic state of the compound at low temperatures rather than a canonical spin glass state. The cluster glass state, accompanied by the multiple magnetic transitions of Nd2/3Ca1/3MnO3, might exist due to the competing interaction between the FM clusters and the AFM matrix induced by the complex nanophase segregated state of the compound.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3