Abstract
The influence of flow rotation on the synthesis of carbon nano-structures using rotating opposed flow ethylene diffusion flames and a catalytic Ni substrate was investigated. In the experiments, the flame parameter was kept constant with fuel and oxidizer compositions of 20%C2H2+80%N2 and 40%O2+60%N2 in the upper and lower burners, respectively, whereas the strain rate was varied by adjusting the rotation speed. Stain rate affects carbon nano-structures synthesis either through the residence time of the flow or carbon sources available for the growth of carbon nanotubes (CNTs) and onions. A diffusion flame at low strain rate is stronger than a weak flame at high strain rate and produces more carbon sources because of the longer residence time of the flow. At a higher strain rate, curved and entangled tubular multi-walled CNTs were harvested, however, at a lower strain rate carbon nano-onions (CNOs) were synthesized. It is verified that flow rotation associated with residence time plays an important role in the synthesis of carbon nanostructures.
Publisher
Trans Tech Publications, Ltd.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献