Building a Post-Search Academic Search Engine Based on a Serial of Clustering Methods

Author:

Chen Lin Chih1

Affiliation:

1. National Dong Hwa University

Abstract

Academic search engines, such as Google Scholar and Scirus, provide a Web-based interface to effectively find relevant scientific articles to researchers. However, current academic search engines are lacking the ability to cluster the search results into a hierarchical tree structure. In this paper, we develop a post-search academic search engine by using a mixed clustering method. In this method, we first adopt a suffix tree clustering and a two-way hash mechanism to generate all meaningful labels. We then develop a divisive hierarchical clustering algorithm to organize the labels into a hierarchical tree. According to the results of experiments, we conclude that using our mixed clustering method to cluster the search results can give significant performance gains than current academic search engines. In this paper, we make two contributions. First, we present a high performance academic search engine based on our mixed clustering method. Second, we develop a divisive hierarchical clustering algorithm to organize all returned search results into a hierarchical tree structure.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3