Thermodynamic Behaviour of the Solar Updraft Tower: A Parametric Model for System Sizing

Author:

Cottam Patrick1,Duffour Philippe1,Fromme Paul1

Affiliation:

1. University College London

Abstract

The solar updraft tower (SUT) concept is an exciting renewable technology with the potential to deliver high power output. A comprehensive SUT sizing computer model has been developed to determine power output and thus appropriate system dimensions for different ambient conditions. The efficient thermodynamic model performs steady-state macro-scale simulations incorporating radiation and natural convection heat transfer mechanisms. The solar collector is simulated as a discretised, axisymmetric, radial system composed of thermal components. A set of linear simultaneous equations describes the heat exchanged between these components and is solved by matrix inversion. The short computation time of the model makes it ideal for parametric analysis of SUT plants across a range of dimensions. The thermodynamic performance of the collector proves to be a limiting factor of system power output. Results from the model show that for given chimney dimensions, there is a maximum collector size beyond which no further useful heat is added to the air as the system has reached thermal equilibrium. Therefore the only way to increase power output further is to increase chimney height and diameter as well as extending the collector diameter.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3