Aspects of Uncertainty Analysis for Large Nonlinear Computational Models

Author:

Worden Keith1,Becker W.E.1,Battipede Manuela2,Surace Cecilia2

Affiliation:

1. University of Sheffield

2. Politecnico di Torino

Abstract

This paper concerns the analysis of how uncertainty propagates through large computational models like finite element models. If a model is expensive to run, a Monte Carlo approach based on sampling over the possible model inputs will not be feasible, because the large number of model runs will be prohibitively expensive. Fortunately, an alternative to Monte Carlo is available in the form of the established Bayesian algorithm discussed here; this algorithm can provide information about uncertainty with many less model runs than Monte Carlo requires. The algorithm also provides information regarding sensitivity to the inputs i.e. the extent to which input uncertainties are responsible for output uncertainty. After describing the basic principles of the Bayesian approach, it is illustrated via two case studies: the first concerns a finite element model of a human heart valve and the second, an airship model incorporating fluid structure interaction.

Publisher

Trans Tech Publications, Ltd.

Reference26 articles.

1. G.J. Klir, and R.M. Smith: Annals of Mathematics of Artificial Intelligence Vol. 32 (2001) pp.5-33.

2. I. Elishakoff, and Y. Ren: Finite Element Methods for Structures with Large Stochastic Variations (Oxford Texts in Applied and Engineering Mathematics, 2003).

3. B. Lallemand, A. Cherki, T. Tison and P. Level; Journal of Sound and Vibration Vol. 220 pp.353-364.

4. A. O'Hagan and J.E. Oakley; Reliability Engineering and System Safety Vol. 85 (2004) pp.239-248.

5. Y.A. Shreider; Method of Statistical Testing: Monte Carlo Method (Elsevier, Amsterdam; London, (1964).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational model of an infant brain subjected to periodic motion simplified modelling and bayesian sensitivity analysis;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2011-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3