The Study on Robust Controller Synthesis Using Genetic Optimization Algorithm Integrating Taguchi Methods

Author:

Shou Ho Nien1

Affiliation:

1. Air Force Institute of Technology

Abstract

A controller synthesis algorithm is developed in this paper. The algorithm employs the genetic algorithm for parameter optimization and Taguchi method for the planning of trails in applying the genetic algorithms. The resulting two-phase algorithm explores the orthogonal array in Taguchi method to conduct a series of experiments so that key parameters pertaining to the control factors, noise factors, and quality factors can be determined. In the first phase, a matrix-type experiment is conducted to determine the configuration for parameter optimization. The second phase then applies parameter optimization method to determine the controller parameter that leads to robust performance. The combined two-phase approach is effective and efficient in controller synthesis. The proposed algorithm is applied to a control-design benchmark problem. The resulting design is shown to have a superior performance to other existing controllers.

Publisher

Trans Tech Publications, Ltd.

Reference18 articles.

1. David E. Goldberg, Editor, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Longman Publishing Co., Inc. Boston (1989).

2. David E. Goldberg, Editor, The Design of Innovation (Genetic Algorithms and Evolutionary Computation), Springer publishers, New York (2002).

3. Proceedings of Supplier Symposia on Taguchi Methods, April 1984, November 1984, October 1985, October 1986, October 1987, October 1988, American Supplier Institute, Inc., 6 Parklane Blvd., Suite 411, Dearborn, MI 48126.

4. Taguchi, G., System of Experimental Design, Edited by Don Clausing, New York, UNIPUB/Kraus International Publications, Vol. 1 and 2, (1987).

5. Thompson, P. M., Classical/Solution for Robust Control Design Benchmark Problem, Journal of Guidance, Control, and Dynamics, Vol. 18, No. 1, January-February, 1995. pp.160-169.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3