Self-Tuning RBFNs Mobile Robot Systems through Bacterial Foraging Particle Swarm Optimization Learning Algorithm

Author:

Joug Shian Ming1,Feng Hsuan Ming2,Guo Dong Hui1

Affiliation:

1. Xiamen University

2. National Quenoy University

Abstract

A radial basis function neural networks (RBFNs) mobile robot control system is automatically developed with the image processing and learned by the bacterial foraging particle swarm optimization (BFPSO) algorithm in this paper. The image-based architecture of robot model is self-generated to travel the routing path in the dynamical and complicated environments. The visible omni-directional image sensors capture the surrounding environment to represent the behavior model of the mobile robot system. Three parameterize RBFNs model with the centers and spreads of each radial basis function, and the connection weights to solve the mobile robot path traveling and routing problems. Several free parameters of radial basis functions can be automatically tuned by the direct of the specified fitness function. In additional, the proper number of radial basis functions of the constructed RBFNs can be chosen by the defined fitness function which takes this factor into account. The desired multiple objectives of the RBFNs control system are proposed to simultaneously approach the shorter path and avoid the unexpected obstacles. Evaluations of PSO and BFPSO show that the developed RBFNs robot systems skip the obstacles and efficiently achieve the desired targets as soon as possible.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3