Numerical Investigation on Laser Ablation Characteristics of PTFE in Advanced Propulsion Systems

Author:

Zhang Dai Xian1,Zhang Rui1,He Zhen1,Wu Jian Jun2,Zhang Fan2

Affiliation:

1. National University of Defense Technology

2. National University of Defense Technology

Abstract

The Polytetrafluoroethylene (PTFE or Teflon) based propellants may be used in Pulsed Plasma Thruster, laser ablation thruster and other advanced propulsion systems. Because of the complex behaviors and phenomena of PTFE in ablation process, the study on thrusters’ operation process becomes complicated. Thermal and mechanical events are investigated, including phase transition, thermo-chemical and optical property variations, and multi-pulses laser ablation of PTFE. Considering more details including internal absorption of radiation, reflectivity of material, surface emission, a one-dimensional ablation model is developed and implemented numerically using a non-uniform grid, and implicit finite-volume method to gain greater insight into the process of laser ablation. The model is validated against analytical solutions and is in accordance with previous experimental results. The parameters of optical transmittance, reflectance and absorption coefficients are measured in experiments and are used in the numerical simulation. The laser ablation characteristics of PTFE are investigated, including the effects of wavelength and multipulses. It’s indicated that the laser ablation processes are influenced intensively by changing the laser wavelength and the effects of multiple pulses are also significant. The above numerical simulation provides insight into physical mechanisms of laser ablation, and suggests potential ways of improving thruster’s efficiency

Publisher

Trans Tech Publications, Ltd.

Reference7 articles.

1. B.L. Clark: Journal of Heat Transfer, Vol. 94 C, No. 4, pp.347-354. (1972).

2. N. Arai: AIAA Journal, Vol. 17, No. 6, pp.634-640. (1979).

3. N. Arai: Institute of Space and Aeronautical Science, University of Tokyo Report, No. 570, pp.23-42. (1979).

4. N. Arai: Institute of Space and Aeronautical Science, University of Tokyo Report, No. 544, pp.259-290. (1976).

5. B. Holzknecht: Int. J. Heat Mass Transfer, Vol. 20, No. 6, pp.661-668. (1977).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3