Effects of Y2O3 and In2O3 on the Electrical Properties of SnO2-Based Varistors

Author:

Zang Guo Zhong1,Li Li Ben1,Wang Sheng Lai2

Affiliation:

1. Henan University of Science and Technology

2. Shandong University,

Abstract

The effects of Y2O3 and In2O3 on the microstructure and electrical properties of SnO2-based varistors were investigated. It was observed that the grain size of the samples decreased with doping Y2O3 and In2O3 and accordingly, the breakdown electrical field EB increased greatly. The measurements of barrier height and grain size reveal that the variation of grain size was not the only reason for the change of electrical properties of the sample doped with In2O3 and, the improvement of nonlinear coefficient α may mainly attribute to the increase of barrier height. Some energy levels of different state defects on the grain boundary were obtained and the energy about 0.15 eV detected here of all the samples may be attributed to the activation of . The different effects of doping Y2O3 and In2O3 indicate that In2O3 is more effective to improve nonlinear electrical behavior and breakdown electrical field of SnO2-based varistors.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3